| 1:06 PM EST

Machine Learning Comes to the Factory Floor

The Sysmac AI controller can identify abnormal machine behavior without being explicitly programmed to do so.


Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

A new automation controller from Omron Automation Americas (omron247.com), the Sysmac AI, uses machine learning capabilities to automatically collect and analyze data from automation equipment, then use the data to recognize abnormal behaviors and respond with compensatory programming and predictive maintenance strategies.

Let’s spell that out: The controller can identify abnormal machine behavior without being explicitly programmed to do so. How? It creates data models based on its analysis of continually reported machine process data. In other words, it figures out what the normal behavior is and monitors the machine status based on that knowledge. Then, if an anomaly is detected, it not only reports it but also writes an operational program change that can compensate for it in the near term—possibly saving a workpiece and/or the automation equipment from immediate damage—and calculates the optimal time for maintenance.

This machine-learning capability saves the users from the time and cost of either developing their own analytics and program-optimization capabilities or implementing a costly third-party cloud-based system that would be slower than this solution. The time needed for the Sysmac AI to detect an anomaly and generate a new instruction that will compensate for it is, according to Omron Automation Center Director Mike Chen, fewer than 10 milliseconds.

And one of the reasons the system can work so fast, according to Chen, is because it is not a cloud-based Industrial Internet of Things/Industry 4.0 solution. That is, the data is not being routed to a distant data center or up to the cloud to be accessed and analyzed with the rest of a factory’s data. Simply, recursive, two-way communication is happening between the automation equipment and the controller. “In this way, the data integrity can be relied upon for ultra-high-speed analysis within our integrated machine learning engine for anomaly detection,” Chen says.

Related Topics


  • Argo AI and the Development of a Really Complicated System

    You talk with Pete Rander, president of Argo AI, a company that is working with Ford on developing Level 4 autonomous vehicle technology, and as the details become clearer, the enormity of the challenge seems daunting—yet Rander, who has been working on this for some 30 years, seems delighted he and his team are doing it.

  • Bosch Study Shows Benefits of Existing Tech

    While the drive toward full autonomy for vehicles is seemingly picking up speed with announcements from companies with new LiDAR systems or the deployment of deep-learning AI systems in vehicles, and while Bosch is working hard in a number of areas to automate driving, here’s something that is striking that comes out of a study, “Connected Car Effect 2025,” that Bosch and the consulting firm Prognos performed.

  • Using Pattern Recognition to Improve Industrial Operations

    Machine learning through pattern recognition can be a faster, less-expensive approach to monitoring manufacturing.